Kamis, 23 Juni 2011

ARTI GOLONGN DARAH PADA KEPRIBADIAN ANDA

Golongan darah A


  1. Biasanya orang yang bergolongan darah A ini berkepala dingin, serius, sabar dan kalem atau cool, bahasa kerennya.
  2. Orang yang bergolongan darah A ini mempunyai karakter yang tegas, bisa di andalkan dan dipercaya namun keras kepala.
  3. Sebelum melakukan sesuatu mereka memikirkannya terlebih dahulu. Dan merencanakan segala sesuatunya secara matang. Mereka mengerjakan segalanya dengan sungguh-sungguh dan secara konsisten.
  4. Mereka berusaha membuat diri mereka se wajar dan ideal mungkin.
  5. Mereke bisa kelihatan menyendiri dan jauh dari orang-orang.
  6. mereka mencoba menekan perasaan mereka dan karena sering melakukannya mereka terlihat tegar. Meskipun sebenarnya mereka mempunya sisi yang lembek seperti gugup dan lain sebagainya.
  7. Mereka cenderung keras terhadap orang-orang yang tidak sependapat. Makanya mereka cenderung berada di sekitar orang-orang yang ber'temperamen' sama.


Golongan darah B
  1. Orang yang bergolongan darah B ini cenderung penasaran dan tertarik terhadap segalanya.
  2. Mereka juga cenderung mempunyai terlalu banyak kegemaran dan hobby. Kalau sedang suka dengan sesuatu biasanya mereka menggebu-gebu namun cepat juga bosan.
  3. Tapi biasanya mereka bisa memilih mana yang lebih penting dari sekian banyak hal yang di kerjakannya.
  4. Mereka cenderung ingin menjadi nomor satu dalam berbagai hal ketimbang hanya dianggap rata-rata. Dan biasanya mereka cenderung melalaikan sesuatu jika terfokus dengan kesibukan yang lain. Dengan kata lain, mereka tidak bisa mengerjakan sesuatu secara berbarengan.
  5. Mereka dari luar terlihat cemerlang, riang, bersemangat dan antusias. Namun sebenarnya hal itu semua sama sekali berbeda dengan yang ada didalam diri mereka.
  6. Mereka bisa dikatakan sebagai orang yang tidak ingin bergaul dengan banyak orang.


Golongan darah O
  1. Orang yang bergolongan darah O, mereka ini biasanya berperan dalam menciptakan gairah untuk suatu grup. Dan berperan dalam menciptakan suatu keharmonisan diantara para anggota grup tersebut.
  2. Figur mereka terlihat sebagai orang yang menerima dan melaksakan sesuatu dengan tenang. Mereka pandai menutupi sesuatu sehingga mereka kelihatan selalu riang, damai dan tidak punya masalah sama sekali. Tapi kalau tidak tahan, mereka pasti akan mencari tempat atau orang untuk curhat (tempat mengadu).
  3. Mereka biasanya pemurah (baik hati), senang berbuat kebajikan. Mereka dermawan dan tidak segan-segan mengeluarkan uang untuk orang lain.
  4. Mereka biasanya di cintai oleh semua orang, "loved by all". Tapi mereka sebenarnya keras kepala juga, dan secara rahasia mempunyai pendapatnya sendiri tentang berbagai hal.
  5. Dilain pihak, mereka sangat fleksibel dan sangat mudah menerima hal-hal yang baru.
  6. Mereka cenderung mudah di pengaruhi oleh orang lain dan oleh apa yang mereka lihat dari TV.
  7. Mereka terlihat berkepala dingin dan terpercaya tapi mereka sering tergelincir dan membuat kesalahan yang besar karena kurang berhati-hati. Tapi hal itu yang menyebabkan orang yang bergolongan darah O ini di cintai.


Golongan darah AB
  1. Orang yang bergolongan darah AB ini mempunyai perasaan yang sensitif, lembut.
  2. Mereka penuh perhatian dengan perasaan orang lain dan selalu menghadapi orang lain dengan kepedulian serta kehati-hatian.
  3. Disamping itu mereka keras dengan diri mereka sendiri juga dengan orang-orang yang dekat dengannya.
  4. Mereka jadi cenderung kelihatan mempunyai dua kepribadian.
  5. Mereka sering menjadi orang yang sentimen dan memikirkan sesuatu terlalu dalam.
  6. Mereka mempunyai banyak teman, tapi mereka membutuhkan waktu untuk menyendiri untuk memikirkan persoalan-persoalan mereka.

FAKTA KEAJAIBAN TUBUH MANUSIA

Ada begitu banyak keajaiban yang tersimpan dalam tubuh manusia. Mulai dari gerak reflek kelopak mata yang berkedip secara berkala untuk melindungi mata, hingga pada kenyataan kuku pada jari manusia yang tetap tumbuh meski sudah dipotong berulang kali. Hmm, jika mau bicara tentang tubuh, ilmu pengetahuan seolah tak pernah berhenti untuk bereksplorasi dan hasilnya selalu saja ada penemuan baru yang mampu membuat kita terkagum-kagum. Beberapa fakta di bawah ini misalnya, pasti bisa membuat Anda tercengang juga. Mari kita intip bersama.
Tubuh mampu memproduksi Aspirin sendiri
Makan buah dan sayur bisa membantu tubuh untuk menghasilkan obat penahan sakit sendiri. Penemuan Journal of Agriculture and Food Chemistry mengindikasikan bahwa partisipan yang mendapat asupan Benzoic Acid, salah satu zat alami yang terkandung dalam buah dan sayur, mampu memproduksi asam Salisil sendiri. Asam Salisil sendiri merupakan komponen penting penyusun aspirin yang berguna untuk mencegah peradangan dan mampu melepaskan rasa sakit.
Tidur siang saat kerja sebenarnya menguntungkan bagi para bos
20 menit tidur siang bisa meningkatkan kondisi waspada seseorang, meningkatkan mood, dan pasti produktivitas jadi membaik. William Anthony, salah satu penulis buku THE ART OF NAPPING AT WORK mengatakan bahwa tidur siang berdampak siaga hingga beberapa jam setelah bangun. Selain itu, jantung juga ikut mendapatkan keuntungan saat tidur siang. Dalam sebuah studi yang dilakukan selama 6 tahun terhadap partisipan dewasa Yunani menemukan bahwa pria yang tidur siang setidaknya 3 kali seminggu memiliki risiko 37% serangan jantung yang lebih rendah.
Ejakulasi bisa menyebabkan suami bersin
Beberapa pria mengalami kesakitan, pusing, atau bersin saat mereka mengalami ejakulasi. Meningkatnya aktivitas saraf selama orgasme itulah yang diduga menjadi penyebab timbulnya sakit kepala. Sedangkan penyebab bersin sendiri adalah karena otak sebagai pusat orgasme merangsang tubuh untuk bereaksi menguap dan bersin.
Setiap lidah manusia memiliki ‘cetakan’ yang berbeda
Sama seperti sidik jari, lidah manusia itu unik adanya. Bisa dijulurkan keluar, melindungi mulut dari tertelan benda tertentu, dan tak bisa ditiru cetakan struktur permukaannya. Tekstur Geometris yang ada di permukaan lidah berbeda pada setiap orang sehingga bisa juga dipakai untuk mengidentifikasi seseorang.
Kaki merupakan ‘pelabuhan’ organ-organ penting
Kulit di telapak tangan dan kaki memiliki ketebalan lebih kurang 4 mm dan kulit kaki merupakan kulit yang paling tebal dari seluruh kulit di tubuh manusia. Selain itu, ada banyak kelenjar dari berbagai organ penting yang berlabuh di kaki. Pantas saja ahli refleksi bisa tahu jenis penyakit yang diidap dari pijatan pada bagian kaki.
Usus buntu ternyata berguna juga
Diklaim sebagai organ yang tak memiliki fungsi apapun, sebenarnya usus buntu juga diciptakan untuk tujuan tertentu. Apa itu? ‘Hunian aman’ bagi bakteri menguntungkan yang dibutuhkan usus untuk membantu proses pencernaan. Saat seseorang menderita diare, isi perutnya biasanya terkuras keluar. Usus buntu inilah yang kemudian menjadi tempat bernaung bagi bakteri menguntungkan agar tidak ikut keluar dari tubuh.
Tubuh manusia lebih tinggi saat pagi hari
Pada pagi hari tubuh manusia rata-rata lebih tinggi setengah inci daripada malam. Hal ini berkat kelebihan cairan dalam tubuh yang ada di antara tulang belakang, yang biasanya ‘terisi’ selagi kita tidur. Begitu hari lewat, saat tubuh beraktivitas, cairan di area tulang belakang ini pun merembes keluar sehingga tubuh jadi menyusut dan lebih pendek.
Tubuh manusia bersinar di dalam gelap
Kondisi ini terungkap jika menggunakan kamera ultra sensitif. Tubuh ternyata mampu memancarkan sejumlah sinar kecil yang (sayangnya) terlalu lemah untuk dideteksi dengan mata biasa.
Perut memproduksi lapisan baru tiap 3 hari sekali
Mengapa? Untuk mencegah asam lambung memakan perut itu sendiri, bila seseorang sedang berpuasa atau tidak makan apapun.

BEBERAPA FAKTA TENTANG TULANG ANDAT

Tulang atau kerangka adalah penopang tubuh manusia. Tanpa tulang, pasti tubuh kita tidak bisa tegak berdiri. Tulang mulai terbentuk sejak bayi dalam kandungan, berlangsung terus sampai dekade kedua dalam susunan yanganda... teratur. Berikut beberapa fakta tentang tulang


Jumlah Tulang Anda

Secara total terdapat 206 tulang dalam tubuh kita. Tulang Paha adalah tulang terbesar dalam tubuh kita. Sedangkan Tulang Sanggurdi adalah tulang terkecil dalam tubuh kita.

Tulang Anda Tidak Statis

Banyak orang berfikir bahwa tulang mereka tidak berubah dan permanen. Sebenarnya tulang kita merupakan jaringan hidup yang secara berkala (konstan) mengalami pembongkaran dan beregenerasi.
Hal ini yang disebut remodelling tulang. Faktanya, tulang kita mengalami regenerasi total setiap 7 sampai 10 tahun. Jadi usia tulang Anda lebih muda daripada usia Anda!

Anda Pikir Tulang Anda Kuat?

Tulang yang ada dalam tubuh kita terdiri dari dua lapisan. Lapisan luar yang kuat dan lapisan dalam yang lemah. Pengeroposan tulang seringkali tidak disadari karena terjadi jauh dalam tulang.

Lapisan Luar yang kuat adalah Tulang Cortical, sering juga disebut tulang padat, yang membentuk suatu lapisan yang melindungi sekitar tulang. Bersifat padat dan keras, memmbentuk hampir 80 % dari total massa kerangka.

Inti bagian dalam yang lemah, juga disebut tulang spons, tulang trabecular ini seperti rumah lebah dan merupakan bagian utama yang membentuk struktur tulang bagian dalam. Lebih keropos, kurang padat dan lebih lemah daripada tulang cortical. memiliki metabolisme tinggi sehingga membuatnya lebih mudah patah atau hancur.

Anda kehilangan Massa Tulang Anda Setiap Hari.

Massa tulang mencapai massa puncaknya pada sekitar usia 30 tahun, yaitu ketika proses penghancuran tulang (yang dilakukan oleh sel osteoclas) mulai terjadi lebih cepat dari proses pembentukan tulang (yang dilakukan oleh sel osteoblas).

Setelah bertahun-tahun, tulang kita menjadi lebih tipis dan rapuh. Hal ini berarti terjadi pengurangan kepadatan dan massa tulang secara bertahap.
Jika tidak diketahui, kondisi ini dapat mengakibatkan osteoporosis.

Apa itu Osteoporosis?

Osteoporosis (penyakit keropos tulang) adalah penyakit yang menyebabkan tulang Anda menjadi lemah, rapuh dan mudah patah. Kadang juga disebut Silet Disease, penyakit yang menyerang secara diam-diam, osteoporosis sering menyerang tanpa tanda-tanda (hingga terjadinya patah tulang).
Terjadinya patah tulang pada punggung (tulang belakang), panggul dan pergelangan tangan biasanya merupakan tanda awal terjadinya osteoporosis.

Osteoporosis, Fenomena yang meningkat!

Di dunia 1 dari 3 wanita dan 1 dari 5 pria di atas 50 tahun akan menderita patah tulang akibat osteoporosis. Di Asia, pada tahun 2050, 1 dari 2 patah tulang pinggang yang disebabkan oleh osteoporosis di dunia diperkirakan terjadi di Asia.

Jagalah kesehatan tulang anda dengan mengkonsumsi kalsium..

Jumat, 18 Maret 2011

Molusca

Moluska (filum Mollusca, dari bahasa Latin: molluscus = lunak) merupakan hewan triploblastik selomata yang bertubuh lunak. Ke dalamnya termasuk semua hewan lunak dengan maupun tanpa cangkang, seperti berbagai jenis siput, kiton, kerang-kerangan, serta cumi-cumi dan kerabatnya.
Moluska merupakan filum terbesar kedua dalam kerajaan binatang setelah filum Arthropoda. Saat ini diperkirakan ada 75 ribu jenis, ditambah 35 ribu jenis dalam bentuk fosil. Moluska hidup di laut, air tawar, payau, dan darat. Dari palung benua di laut sampai pegunungan yang tinggi, bahkan mudah saja ditemukan di sekitar rumah kita.
Moluska dipelajari dalam cabang zoologi yang disebut malakologi (malacology).

Ciri tubuh

Tubuh tidak bersegmen. Simetri bilateral. Tubuhnya terdiri dari "kaki" muskular, dengan kepala yang berkembang beragam menurut kelasnya. Kaki dipakai dalam beradaptasi untuk bertahan di substrat, menggali dan membor substrat, atau melakukan pergerakan.

Ukuran dan bentuk tubuh

Ukuran dan bentuk tubuh moluska sangat bervariasi. Misalnya, siput yang panjangnya hanya beberapa milimeter dengan bentuk bulat telur. Namun, ada juga cumi-cumi raksasa dengan bentuk torpedo bersayap yang panjangnya lebih dari 18m.

Strukur dan fungsi tubuh

Tubuh hewan ini terdiri dari tiga bagian utama, yaitu kaki, badan, dan mantel.
Sistem saraf moluska terdiri dari cincin saraf yang memiliki esofagus dengan serabut saraf yang menyebar. Sistem pencernaannya lengkap, terdiri dari mulut, esofagus, lambung, usus, dan anus.
Anatomi moluska relatif mirip dengan vertebrata. Hal ini menyebabkan banyak ahli memperkirakan bahwa vertebrata dan moluska masih memiliki kedekatan hubungan evolusi. Hal ini diperkuat pula dengan kenyataan bahwa moluska, terutama Cephalopoda, memiliki otak yang berkembang baik dan beberapa di antaranya terbukti memiliki kemampuan mengingat yang kuat.

Rabu, 09 Maret 2011

Hereditas

Hereditas adalah pewarisan watak dari induk ke keturunannya baik secara biologis melalui gen (DNA) atau secara sosial melalui pewarisan gelar, atau status sosial.
Sudah terlihat jelas oleh manusia-manusia sejak dahulu bahwa keturunan menyerupai induknya. Seperti contohnya pada buku Kejadian 30-46 meceritakan bagaimana Jacob dan Laban membagi domba mereka menjadi domba yang putih dan domba yang berbintik-bintik untuk memastikan tidak ada yang tercuri. Walaupun sudah jelas bagi orang-orang zaman dahulu bahwa dalam hereditas sifat dan watak diwariskan, mekanisme dari hereditas itu sendiri masih belum jelas.

Daftar isi

[sembunyikan]

[sunting] Konsep kuno Hereditas

Filsuf Yunani mempunyai bermacam-macam ide tentang hereditas. Theophrastus mengajukan bahwa bunga jantan membuat bunga betina menjadi matang, Hiprokrates menduga bahwa "benih" diproduksi oleh berbagai anggota tubuh dan di wariskan pada saat pembuahan, Aristoteles bahwa semen pejantan dan betina becampur pada saat pembuahan, sedangkan Aeskhylus, pada tahun 458 SM mengajukan ide bahwa sang pejantan adalah orang tua yang sebenarnya dan betina adalah "perawat dari bayi yang disemai di dalamnya".
Bermacam-macam mekanisme hereditas di ajukan tanpa diuji atau dikuantifikasi dengan layak. Mekanisme ini diantaranya pewarisan campuran, dan pewarisan sifat dapatan. Namun demikian, hewan dan tanaman domestik dapat dikembangkan melalui seleksi artifisial. Pewarisan sifat dapatan juga membentuk bagian dari ide evolusi Lamarck
Pada abad kedelapan belas, ahli mikroskop Antoine van Leeuwenhoek (1632-1723) menemukan "binatang kecil" di dalam sperma manusia dan hewan lainnya. Penemuan ini menjadi dasar dari teori "spermis" yang menyatakan bahwa dalam sebuah sperma terdapat "orang kecil" (homunculius) dan satu-satunya sumbangan yang dilakukan oleh pihak wanita adalah kandungan yang di dalamnya homonculus tumbuh dan berkembang. Teori lainnya yang bertentangan, "ovis" menduga bahwa wanitalah yang menyimpan manusia kecil di dalam ovum.
Pangenesis adalah sebuah ide yang menyatakan bahwa pria dan wanita membentuk sebuah "pangen" di dalam setiap organ. Pangen ini kemudian berjalan melalui darah ke alat kelamin kemudian ke dalam bakap anak. Konsep ini bermula pada zaman yunani kuno dan memengaruhi ilmu hayat sampai sekitar seratus tahun yang lalu. Istilah "hubungan darah", "darah murni", dan "darah bangsawan" adalah sisa-sisa dari teori Pangenesis. Pada dasawarsa 1870 Francis Galton, sepupu dari Charles Darwin melakukan percobaan yang menyangkal Pangenesis.

[sunting] Charles Darwin: Teori Evolusi

Charles Darwin mengajukan teori evolusi pada tahun 1859 dan salah satu masalah utamanya adalah kurangnya mekanisme dasar untuk hereditas. Darwin percaya akan pewarisan dampiran dan pewarisan sifat dapatan. Pewarisan campuran akan menghasilkan keseragaman di antara populasi hanya dalam beberapa generasi sehingga akan menghilangkan variasi dari sebuah populasi yang kepadanya seleksi alam dapat berlaku. Hal ini membuat Darwin mengadopsi ide Lamarck pada makalahnya yang setelah The Origin. Pendekatan utama Darwin untuk hereditas adalah untuk mengaris bawahi bagaimana pewarisan itu dapat bekerja.
Model awal Darwin akan konsep hereditas diadopsi oleh saudaranya Francis Galton dan kemudian dimodifikasi olehnya untuk membuat sebuah kerangka kerja akan teori biometrik. Galton menolak aspek dari pangenesis darwin yang bertumpu pada sifat dapatan.
Pewarisan sifat dapatan terbukti kesalahannya pada dasawarsa 1880 ketika August Weismann memotong ekor dari beberapa generasi tikus dan mendapati bahwa keturunannya tetap mempunyai ekor.

[sunting] Gregor Mendel: Bapak genetika modern

Ide akan pewarisan gen sebagian dapat di atribusikan ke seseorang pendeta Moravia bernama gregor Mendel[1] pendeta yang menerbitkan penelitiannya akan kacang polong pada tahun 1865. Namun karyanya tidak dikenal luas dan baru ditemukan kembali pada tahun 1901. Pada awalnya dianggap bahwa pewarisan ala Mendel hanya dihitung untuk perbedaan yang besar seperti yang diamati oleh mendel pada tanaman polongnya dan ide akan pengaruh kumulatif pada gen tidak disadari sampai ketika makalah oleh Ronald Fisher pada tahun 1918 berjudul "Hubungan Antara Keturunan Dalam Pewarisan Mendel". Untuk sejarah genetika lebih lanjut dapat dilihat dalam artikel Sejarah ilmu genetika

[sunting] Perkembangan Modern Genetika dan Hereditas

Pada dasawarsa 1930, tulisan FIsher dan lainnya menghasilkan sebuah teori gabungan dari teori Mendel dan Biometeri menjadi sintesis mutakhir Evolusi.
Trofim Lysenko namun menyebab kemunduran dalam apa yang sekarang dikenal Lysenkoisme pada Uni Soviet ketika dia menekankan ide Lamarck tentang [Pewarisan sifat dapatan]]. Gerakan ini mempengaruhi penelitian dalam bidang pertanian dan mengakibatkan kekurangan pangan pada dasawarsa 1960 di USSR.


Kamis, 03 Maret 2011

Mutasi

Mutasi adalah perubahan yang terjadi pada bahan genetik (DNA maupun RNA), baik pada taraf urutan gen (disebut mutasi titik) maupun pada taraf kromosom. Mutasi pada tingkat kromosomal biasanya disebut aberasi. Mutasi pada gen dapat mengarah pada munculnya alel baru dan menjadi dasar bagi kalangan pendukung evolusi mengenai munculnya variasi-variasi baru pada spesies.
Mutasi terjadi pada frekuensi rendah di alam, biasanya lebih rendah daripada 1:10.000 individu. Mutasi di alam dapat terjadi akibat zat pembangkit mutasi (mutagen, termasuk karsinogen), radiasi surya maupun radioaktif, serta loncatan energi listrik seperti petir.
Individu yang memperlihatkan perubahan sifat (fenotipe) akibat mutasi disebut mutan. Dalam kajian genetik, mutan biasa dibandingkan dengan individu yang tidak mengalami perubahan sifat (individu tipe liar atau "wild type").

Daftar isi

[sembunyikan]

Macam-macam Mutasi Berdasarkan Sel yang Bermutasi

Mutasi somatik adalah mutasi yang terjadi pada sel somatik, yaitu sel tubuh seperti sel kulit. Mutasi ini tidak akan diwariskan pada keturunannya. Mutasi Gametik adalah mutasi yang terjadi pada sel gamet, yaitu sel organ reproduksi yang meliputi sperma dan ovum pada manusia. Karena terjadinya di sel gamet, maka akan diwariskan kepada keturunannya.
Pada umumnya, mutasi itu merugikan, mutannya bersifat letal dan homozigot resesif. Namun mutasi juga menguntungkan, diantaranya, melalui mutasi, dapat dibuat tumbuhan poliploid yang sifatnya unggul. Contohnya, semangka tanpa biji, jeruk tanpa biji, buah stroberi yang besar, dll. Mutasi ini juga menjadi salah satu kunci terjadinya evolusi di dunia ini.
Terbentuknya tumbuhan poliploid ini menguntungkan bagi manusia, namun merugikan bagi tumbuhan yang mengalami mutasi, karena tumbuhan tersebut menjadi tidak bisa berkembang biak secara generatif.
Bahan-bahan yang menyebabkan terjadinya mutasi disebut MUTAGEN. Mutagen dibagi menjadi 3, yaitu:
Mutagen bahan kimia, contohnya adalah kolkisin dan zat digitonin. Kolkisin adalah zat yang dapat menghalangi terbentuknya benang-benang spindel pada proses anafase dan dapat menghambat pembelahan sel pada anafase.
Mutagen bahan fisika, contohnya sinar ultraviolet, sinar radioaktif, dan sinar gamma. Sinar ultraviolet dapat menyebabkan kanker kulit.
Mutagen bahan biologi, diduga virus dan bakeri dapat menyebabkan terjadinya mutasi. Bagian virus yang dapat menyebabkan terjadinya mutasi adalah DNA-nya.

Macam-macam mutasi berdasarkan bagian yang bermutasi

Mutasi titik

Mutasi titik merupakan perubahan pada basa N dari DNA atau RNA. Mutasi titik relatif sering terjadi namun efeknya dapat dikurangi oleh mekanisme pemulihan gen. Mutasi titik dapat berakibat berubahnya urutan asam amino pada protein, dan dapat mengakibatkan berkurangnya, berubahnya atau hilangnya fungsi enzim. Teknologi saat ini menggunakan mutasi titik sebagai marker (disebut SNP) untuk mengkaji perubahan yang terjadi pada gen dan dikaitkan dengan perubahan fenotipe yang terjadi.
contoh mutasi gen adalah reaksi asam nitrit dengan adenin menjadi zat hipoxanthine. Zat ini akan menempati tempat adenin asli dan berpasangan dengan sitosin, bukan lagi dengan timin.

Aberasi

Mutasi kromosom, sering juga disebut dengan mutasi besar/gross mutation atau aberasi kromosom adalah perubahan jumlah kromosom dan susunan atau urutan gen dalam kromosom. Mutasi kromosom sering terjadi karena kesalahan meiosis dan sedikit dalam mitosis.
Aneuploidiadalah perubahan jumlah n-nya. Dalam hal ini, "n" menandakan jumlah set kromosom. Sebagai contoh, sel tubuh manusia memiliki 2 paket kromosom sehingga disebut 2n, dimana satu paket n manusia berjumlah 23 kromosom. Aneuploidi dibagi menjadi 2, yaitu: >> Autopoliploidi, yaitu n-nya mengganda sendiri karena kesalahan meiosis. >> Allopoliploidi, yaitu perkawinan atau hibrid antara spesies yang berbeda jumlah set kromosomnya.
Aneusomiadalah perubahan jumlah kromosom. Penyebabnya adalah anafase lag (peristiwa tidak melekatnya beneng-benang spindel ke sentromer) dan non disjunction (gagal berpisah).
Aneusomi pada manusia dapat menyebabkan:
Sindrom Turner, dengan kariotipe (22AA+X0). Jumlah kromosomnya 45 dan kehilangan 1 kromosom kelamin. Penderita Sindrom Turner berjenis kelamin wanita, namun ovumnya tidak berkembang (ovaricular disgenesis).
Sindrom Klinefelter, kariotipe (22 AA+XXY), mengalami trisomik pada kromosom gonosom. Penderita Sindrom Klinefelter berjenis kelamin laki-laki, namun testisnya tidak berkembang (testicular disgenesis) sehingga tidak bisa menghasilkan sperma (aspermia) dan mandul (gynaecomastis) serta payudaranya tumbuh.
Sindrom Jacobs, kariotipe (22AA+XYY), trisomik pada kromosom gonosom. Penderita sindrom ini umumnya berwajah kriminal, suka menusuk-nusuk mata dengan benda tajam, seperti pensil,dll dan juga sering berbuat kriminal. Penelitian di luar negeri mengatakan bahwa sebagian besar orang-orang yang masuk penjara adalah orang-orang yang menderita Sindrom Jacobs.
Sindrom Patau, kariotipe (45A+XX/XY), trisomik pada kromosom autosom. kromosom autosomnya mengalami kelainan pada kromosom nomor 13, 14, atau 15.
Sindrom Edward, kariotipe (45A+XX/XY), trisomik pada autosom. Autosom mengalami kelainan pada kromosom nomor 16,17, atau 18. Penderita sindrom ini mempunyai tengkorak lonjong, bahu lebar pendek, telinga agak ke bawah dan tidak wajar.
Delesi Terjadi ketika sebuah fragmen kromosom patah dan hilang pada saat pembelahan sel. Kromosom tempat fragmen tersebut berasal kemudian akan kehilangan gen-gen tertentu. Namun dalam beberapa kasus, fragmen patahan tersebut dapat berikatan dengan kromosom homolog menghasilkan Duplikasi.Fragmen tersebut juga dapat melekat kembali pada kromosom asalnya dengan arah terbalik dan menghasilkan Inversi

Pemanfaatan mutasi

Meskipun secara biologi sebagian terbesar mutasi menyebabkan gangguan pada kebugaran (fitness) individu, bahkan kematian, mutasi sebenarnya adalah salah satu kunci bagi kemampuan beradaptasi suatu jenis (spesies) terhadap lingkungan baru atau yang berubah. Sisi positif ini dimanfaatkan oleh sejumlah bidang biologi terapan.

Terapi sel-sel tumor

Aplikasi radiasi sinar mengion (dikenal sebagai radioterapi, seperti penyinaran dengan sinar X) dan kemoterapi untuk menghambat perkembangan sel-sel tumor dan kanker pada dasarnya adalah menginduksi mutasi pada sel-sel kanker sebagai targetnya. Agensia mutasi tersebut akan menyebabkan sel-sel target berhenti tumbuh karena tidak mampu lagi memperbanyak diri.[sunting] Pemuliaan
Pemaparan tanaman terhadap radiasi sinar mengion, seperti sinar gamma dari Co-60, atau terhadap beberapa kemikalia, seperti EMS dan DS, dalam waktu dan kadar tertentu juga digunakan untuk menginduksi mutasi. Dalam penerapan ini, mutasi tidak ditujukan untuk mematikan sel, tetapi untuk mengubah susunan basa nitrogen pada DNA atau untuk menyebabkan mutasi segmental. Harapannya adalah ada beberapa sel yang akan mengalami mutasi yang menguntungkan. Dengan demikian, tidak hanya sedikit yang dipaparkan, tetapi ribuan sampai ratusan ribu individu.
Cara pemuliaan dengan bantuan mutasi ini kebanyakan dilakukan terhadap tanaman hortikultura, seperti tanaman sayuran dan tanaman hias (ornamental). Batan telah menghasilkan beberapa kultivar unggul padi yang dirakit melalui mutasi.

Evolusi

Bagian dari seri Biologi mengenai
Evolusi
Primate skull series.png
Pengenalan
Mekanisme dan Proses
Adaptasi
Hanyutan genetika
Aliran gen
Mutasi
Seleksi alam
Spesiasi
Riset dan sejarah
Bukti
Sejarah evolusi kehidupan
Sejarah
Sintesis modern
Efek sosial
Teori dan fakta
Keberatan / Kontroversi
Bidang
Kladistika
Genetika ekologi
Perkembangan evolusioner
Evolusi manusia
Evolusi molekuler
Filogenetika
Genetika populasi
Portal Biologi · l  b  s 
Evolusi (dalam kajian biologi) berarti perubahan pada sifat-sifat terwariskan suatu populasi organisme dari satu generasi ke generasi berikutnya. Perubahan-perubahan ini disebabkan oleh kombinasi tiga proses utama: variasi, reproduksi, dan seleksi. Sifat-sifat yang menjadi dasar evolusi ini dibawa oleh gen yang diwariskan kepada keturunan suatu makhluk hidup dan menjadi bervariasi dalam suatu populasi. Ketika organisme bereproduksi, keturunannya akan mempunyai sifat-sifat yang baru. Sifat baru dapat diperoleh dari perubahan gen akibat mutasi ataupun transfer gen antar populasi dan antar spesies. Pada spesies yang bereproduksi secara seksual, kombinasi gen yang baru juga dihasilkan oleh rekombinasi genetika, yang dapat meningkatkan variasi antara organisme. Evolusi terjadi ketika perbedaan-perbedaan terwariskan ini menjadi lebih umum atau langka dalam suatu populasi.
Evolusi didorong oleh dua mekanisme utama, yaitu seleksi alam dan hanyutan genetik. Seleksi alam merupakan sebuah proses yang menyebabkan sifat terwaris yang berguna untuk keberlangsungan hidup dan reproduksi organisme menjadi lebih umum dalam suatu populasi - dan sebaliknya, sifat yang merugikan menjadi lebih berkurang. Hal ini terjadi karena individu dengan sifat-sifat yang menguntungkan lebih berpeluang besar bereproduksi, sehingga lebih banyak individu pada generasi selanjutnya yang mewarisi sifat-sifat yang menguntungkan ini.[1][2] Setelah beberapa generasi, adaptasi terjadi melalui kombinasi perubahan kecil sifat yang terjadi secara terus menerus dan acak ini dengan seleksi alam.[3] Sementara itu, hanyutan genetik (Bahasa Inggris: Genetic Drift) merupakan sebuah proses bebas yang menghasilkan perubahan acak pada frekuensi sifat suatu populasi. Hanyutan genetik dihasilkan oleh probabilitas apakah suatu sifat akan diwariskan ketika suatu individu bertahan hidup dan bereproduksi.
Walaupun perubahan yang dihasilkan oleh hanyutan dan seleksi alam kecil, perubahan ini akan berakumulasi dan menyebabkan perubahan yang substansial pada organisme. Proses ini mencapai puncaknya dengan menghasilkan spesies yang baru.[4] Dan sebenarnya, kemiripan antara organisme yang satu dengan organisme yang lain mensugestikan bahwa semua spesies yang kita kenal berasal dari nenek moyang yang sama melalui proses divergen yang terjadi secara perlahan ini.[1]
Dokumentasi fakta-fakta terjadinya evolusi dilakukan oleh cabang biologi yang dinamakan biologi evolusioner. Cabang ini juga mengembangkan dan menguji teori-teori yang menjelaskan penyebab evolusi. Kajian catatan fosil dan keanekaragaman hayati organisme-organisme hidup telah meyakinkan para ilmuwan pada pertengahan abad ke-19 bahwa spesies berubah dari waktu ke waktu.[5][6] Namun, mekanisme yang mendorong perubahan ini tetap tidaklah jelas sampai pada publikasi tahun 1859 oleh Charles Darwin, On the Origin of Species yang menjelaskan dengan detail teori evolusi melalui seleksi alam.[7] Karya Darwin dengan segera diikuti oleh penerimaan teori evolusi dalam komunitas ilmiah.[8][9][10][11] Pada tahun 1930, teori seleksi alam Darwin digabungkan dengan teori pewarisan Mendel, membentuk sintesis evolusi modern,[12] yang menghubungkan satuan evolusi (gen) dengan mekanisme evolusi (seleksi alam). Kekuatan penjelasan dan prediksi teori ini mendorong riset yang secara terus menerus menimbulkan pertanyaan baru, di mana hal ini telah menjadi prinsip pusat biologi modern yang memberikan penjelasan secara lebih menyeluruh tentang keanekaragaman hayati di bumi.[9][10][13]
Meskipun teori evolusi selalu diasosiasikan dengan Charles Darwin, namun sebenarnya biologi evolusioner telah berakar sejak zaman Aristoteles. Namun demikian, Darwin adalah ilmuwan pertama yang mencetuskan teori evolusi yang telah banyak terbukti mapan menghadapi pengujian ilmiah. Sampai saat ini, teori Darwin mengenai evolusi yang terjadi karena seleksi alam dianggap oleh mayoritas komunitas sains sebagai teori terbaik dalam menjelaskan peristiwa evolusi.[14]

Daftar isi

[sembunyikan]

[sunting] Sejarah pemikiran evolusi

Alfred Wallace, dikenal sebagai Bapak Biogeografi Evolusi
Charles Darwin pada usia 51, beberapa waktu setelah mempublikasi buku On the Origin of Species.
Pemikiran-pemikiran evolusi seperi nenek moyang bersama dan transmutasi spesies telah ada paling tidak sejak abad ke-6 SM ketika hal ini dijelaskan secara rinci oleh seorang filsuf Yunani, Anaximander.[15] Beberapa orang dengan pemikiran yang sama meliputi Empedokles, Lucretius, biologiawan Arab Al Jahiz,[16] filsuf Persia Ibnu Miskawaih, Ikhwan As-Shafa,[17] dan filsuf Cina Zhuangzi.[18] Seiring dengan berkembangnya pengetahuan biologi pada abad ke-18, pemikiran evolusi mulai ditelusuri oleh beberapa filsuf seperti Pierre Maupertuis pada tahun 1745 dan Erasmus Darwin pada tahun 1796.[19] Pemikiran biologiawan Jean-Baptiste Lamarck tentang transmutasi spesies memiliki pengaruh yang luas. Charles Darwin merumuskan pemikiran seleksi alamnya pada tahun 1838 dan masih mengembangkan teorinya pada tahun 1858 ketika Alfred Russel Wallace mengirimkannya teori yang mirip dalam suratnya "Surat dari Ternate". Keduanya diajukan ke Linnean Society of London sebagai dua karya yang terpisah.[20] Pada akhir tahun 1859, publikasi Darwin, On the Origin of Species, menjelaskan seleksi alam secara mendetail dan memberikan bukti yang mendorong penerimaan luas evolusi dalam komunitas ilmiah.
Perdebatan mengenai mekanisme evolusi terus berlanjut, dan Darwin tidak dapat menjelaskan sumber variasi terwariskan yang diseleksi oleh seleksi alam. Seperti Lamarck, ia beranggapan bahwa orang tua mewariskan adaptasi yang diperolehnya selama hidupnya,[21] teori yang kemudian disebut sebagai Lamarckisme.[22] Pada tahun 1880-an, eksperimen August Weismann mengindikasikan bahwa perubahan ini tidak diwariskan, dan Lamarkisme berangsur-angsur ditinggalkan.[23][24] Selain itu, Darwin tidak dapat menjelaskan bagaimana sifat-sifat diwariskan dari satu generasi ke generasi yang lain. Pada tahun 1865, Gregor Mendel menemukan bahwa pewarisan sifat-sifat dapat diprediksi.[25] Ketika karya Mendel ditemukan kembali pada tahun 1900-an, ketidakcocokan atas laju evolusi yang diprediksi oleh genetikawan dan biometrikawan meretakkan hubungan model evolusi Mendel dan Darwin.
Walaupun demikian, adalah penemuan kembali karya Gregor Mendel mengenai genetika (yang tidak diketahui oleh Darwin dan Wallace) oleh Hugo de Vries dan lainnya pada awal 1900-an yang memberikan dorongan terhadap pemahaman bagaimana variasi terjadi pada sifat tumbuhan dan hewan. Seleksi alam menggunakan variasi tersebut untuk membentuk keanekaragaman sifat-sifat adaptasi yang terpantau pada organisme hidup. Walaupun Hugo de Vries dan genetikawan pada awalnya sangat kritis terhadap teori evolusi, penemuan kembali genetika dan riset selanjutnya pada akhirnya memberikan dasar yang kuat terhadap evolusi, bahkan lebih meyakinkan daripada ketika teori ini pertama kali diajukan.[26]
Kontradiksi antara teori evolusi Darwin melalui seleksi alam dengan karya Mendel disatukan pada tahun 1920-an dan 1930-an oleh biologiawan evolusi seperti J.B.S. Haldane, Sewall Wright, dan terutama Ronald Fisher, yang menyusun dasar-dasar genetika populasi. Hasilnya adalah kombinasi evolusi melalui seleksi alam dengan pewarisan Mendel menjadi sintesis evolusi modern.[27] Pada tahun 1940-an, identifikasi DNA sebagai bahan genetika oleh Oswald Avery dkk. beserta publikasi struktur DNA oleh James Watson dan Francis Crick pada tahun 1953, memberikan dasar fisik pewarisan ini. Sejak saat itu, genetika dan biologi molekuler menjadi inti biologi evolusioner dan telah merevolusi filogenetika.[12]
Pada awal sejarahnya, biologiawan evolusioner utamanya berasal dari ilmuwan yang berorientasi pada bidang taksonomi. Seiring dengan berkembangnya sintesis evolusi modern, biologi evolusioner menarik lebih banyak ilmuwan dari bidang sains biologi lainnya.[12] Kajian biologi evolusioner masa kini melibatkan ilmuwan yang berkutat di bidang biokimia, ekologi, genetika, dan fisiologi. Konsep evolusi juga digunakan lebih lanjut pada bidang seperti psikologi, pengobatan, filosofi, dan ilmu komputer.

Dasar genetik evolusi

Struktur DNA. Basa nukleotida berada ditengah, dikelilingi oleh rantai fosfat-gula dalam bentuk heliks ganda.
Evolusi organisme terjadi melalui perubahan pada sifat-sifat yang terwariskan. Warna mata pada manusia, sebagai contohnya, merupakan sifat-sifat yang terwariskan ini.[28] Sifat terwariskan dikontrol oleh gen dan keseluruhan gen dalam suatu genom organisme disebut sebagai genotipe.[29]
Keseluruhan sifat-sifat yang terpantau pada perilaku dan struktur organisme disebut sebagai fenotipe. Sifat-sifat ini berasal dari interaksi genotipe dengan lingkungan.[30] Oleh karena itu, tidak setiap aspek fenotipe organisme diwariskan. Kulit berwarna gelap yang dihasilkan dari penjemuran matahari berasal dari interaksi antara genotipe seseorang dengan cahaya matahari; sehingga warna kulit gelap ini tidak akan diwarisi ke keturunan orang tersebut. Walaupun begitu, manusia memiliki respon yang berbeda terhadap cahaya matahari, dan ini diakibatkan oleh perbedaan pada genotipenya. Contohnya adalah individu dengan sifat albino yang kulitnya tidak akan menggelap dan sangat sensitif terhadap sengatan matahari.[31]
Sifat-sifat terwariskan diwariskan antar generasi via DNA, sebuah molekul yang dapat menyimpan informasi genetika.[29] DNA merupakan sebuah polimer yang terdiri dari empat jenis basa nukleotida. Urutan basa pada molekul DNA tertentu menentukan informasi genetika. Bagian molekul DNA yang menentukan sebuah satuan fungsional disebut gen; gen yang berbeda mempunyai urutan basa yang berbeda. Dalam sel, unting DNA yang panjang berasosiasi dengan protein, membentuk struktur padat yang disebut kromosom. Lokasi spesifik pada sebuah kromosom dikenal sebagai lokus. Jika urutan DNA pada sebuah lokus bervariasi antar individu, bentuk berbeda pada urutan ini disebut sebagai alel. Urutan DNA dapat berubah melalui mutasi, menghasilkan alel yang baru. Jika mutasi terjadi pada gen, alel yang baru dapat memengaruhi sifat individu yang dikontrol oleh gen, menyebabkan perubahan fenotipe organisme. Walaupun demikian, manakala contoh ini menunjukkan bagaimana alel dan sifat bekerja pada beberapa kasus, kebanyakan sifat lebih kompleks dan dikontrol oleh interaksi banyak gen.[32][33]

Variasi

Fenotipe suatu individu organisme dihasilkan dari genotipe dan pengaruh lingkungan organisme tersebut. Variasi fenotipe yang substansial pada sebuah populasi diakibatkan oleh perbedaan genotipenya.[33] Sintesis evolusioner modern mendefinisikan evolusi sebagai perubahan dari waktu ke waktu pada variasi genetika ini. Frekuensi alel tertentu akan berfluktuasi, menjadi lebih umum atau kurang umum relatif terhadap bentuk lain gen itu. Gaya dorong evolusioner bekerja dengan mendorong perubahan pada frekuensi alel ini ke satu arah atau lainnya. Variasi menghilang ketika sebuah alel mencapai titik fiksasi, yakni ketika ia menghilang dari suatu populasi ataupun ia telah menggantikan keseluruhan alel leluhur.[34]
Variasi berasal dari mutasi bahan genetika, migrasi antar populasi (aliran gen), dan perubahan susunan gen melalui reproduksi seksual. Variasi juga datang dari tukar ganti gen antara spesies yang berbeda; contohnya melalui transfer gen horizontal pada bakteria dan hibridisasi pada tanaman.[35] Walaupun terdapat variasi yang terjadi secara terus menerus melalui proses-proses ini, kebanyakan genom spesies adalah identik pada seluruh individu spesies tersebut.[36] Namun, bahkan perubahan kecil pada genotipe dapat mengakibatkan perubahan yang dramatis pada fenotipenya. Misalnya simpanse dan manusia hanya berbeda pada 5% genomnya.[37]

Mutasi

Penggandaan pada kromosom
Variasi genetika berasal dari mutasi acak yang terjadi pada genom organisme. Mutasi merupakan perubahan pada urutan DNA sel genom dan diakibatkan oleh radiasi, virus, transposon, bahan kimia mutagenik, serta kesalahan selama proses meiosis ataupun replikasi DNA.[38][39][40] Mutagen-mutagen ini menghasilkan beberapa jenis perubahan pada urutan DNA. Hal ini dapat mengakibatkan perubahan produk gen, mencegah gen berfungsi, atupun tidak menghasilkan efek sama sekali. Kajian pada lalat Drosophila melanogaster menunjukkan bahwa jika sebuah mutasi mengubah protein yang dihasilkan oleh sebuah gen, 70% mutasi ini memiliki efek yang merugikan dan sisanya netral ataupun sedikit menguntungkan.[41] Oleh karena efek-efek merugikan mutasi terhadap sel, organisme memiliki mekanisme reparasi DNA untuk menghilangkan mutasi.[38] Oleh karena itu, laju mutasi yang optimal untuk sebuah spesies merupakan kompromi bayaran laju mutasi tinggi yang merugikan, dengan bayaran metabolik sistem mengurangi laju mutasi, seperti enzim reparasi DNA.[42] Beberapa spesies seperti retrovirus memiliki laju mutasi yang tinggi, sedemikian rupanya keturunannya akan memiliki gen yang bermutasi.[43] Mutasi cepat seperti ini dipilih agar virus ini dapat secara konstan dan cepat berevolusi, sehingga dapat menghindari respon sistem immun manusia.[44]
Mutasi dapat melibatkan duplikasi fragmen DNA yang besar, yang merupakan sumber utama bahan baku untuk gen baru yang berevolusi, dengan puluhan sampai ratusan gen terduplikasi pada genom hewan setiap satu juta tahun.[45] Kebanyakan gen merupakan bagian dari famili gen leluhur yang sama yang lebih besar.[46]
Gen dihasilkan oleh beberapa metode, umumnya melalui duplikasi dan mutasi gen leluhur ataupun dengan merekombinasi bagian gen yang berbeda, membentuk kombinasi baru dengan fungsi yang baru.[47][48] Sebagai contoh, mata manusia menggunakan empat gen untuk menghasilkan struktur yang dapat merasakan cahaya: tiga untuk sel kerucut, dan satu untuk sel batang; keseluruhannya berasal dari satu gen leluhur tunggal.[49] Keuntungan duplikasi gen (atau bahkan keseluruhan genom) adalah bahwa tumpang tindih atau fungsi berlebih pada gen ganda mengijinkan alel-alel dipertahankan (jika tidak akan membahayakan), sehingga meningkatkan keanekaragaman genetika.[50]
Perubahan pada bilangan kromosom dapat melibatkan mutasi yang bahkan lebih besar, dengan segmen DNA dalam kromosom terputus kemudian tersusun kembali. Sebagai contoh, dua kromosom pada genus Homo bersatu membentuk kromosom 2 manusia; pernyatuan ini tidak terjadi pada garis keturunan kera lainnya, dan tetap dipertahankan sebagai dua kromosom terpisah.[51] Peran paling penting penataan ulang kromosom ini pada evolusi kemungkinan adalah untuk mempercepat divergensi populasi menjadi spesies baru dengan membuat populasi tidak saling berkembang biak, sehingga mempertahankan perbedaan genetika antara populasi ini.[52]
Urutan DNA yang dapat berpindah pada genom, seperti transposon, merupakan bagian utama pada bahan genetika tanaman dan hewan, dan dapat memiliki peran penting pada evolusi genom.[53] Sebagai contoh, lebih dari satu juta kopi urutan Alu terdapat pada genom manusia, dan urutan-urutan ini telah digunakan untuk menjalankan fungsi seperti regulasi ekspresi gen.[54] Efek lain dari urutan DNA yang bergerak ini adalah ketika ia berpindah dalam suatu genom, ia dapat memutasikan atau mendelesi gen yang telah ada, sehingga menghasilkan keanekaragaman genetika.[55]

[sunting] Jenis kelamin dan rekombinasi

Pada organisme aseksual, gen diwariskan bersama, atau ditautkan, karena ia tidak dapat bercampur dengan gen organisme lain selama reproduksi. Keturunan organisme seksual mengandung campuran acak kromosom leluhur yang dihasilkan melalui pemilahan bebas. Pada proses rekombinasi genetika terkait, organisme seksual juga dapat bertukarganti DNA antara dua kromosom yang berpadanan.[56] Rekombinasi dan pemilahan ulang tidak mengubahan frekuensi alel, namun mengubah alel mana yang diasosiasikan satu sama lainnya, menghasilkan keturunan dengan kombinasi alel yang baru.[57] Manakala proses ini meningkatkan variasi pada keturunan individu apapun, pencampuran genetika dapat diprediksi untuk tidak menghasilkan efek, meningkatkan, ataupun mengurangi variasi genetika pada populasi, bergantung pada bagaimana ragam alel pada populasi tersebut terdistribusi. Sebagai contoh, jika dua alel secara acak terdistribusi pada sebuah populasi, maka jenis kelamin tidak akan memberikan efek pada variasi. Namun, jika dua alel cenderung ditemukan sebagai satu pasang, maka pencampuran genetika akan menyeimbangkan distribusi tak-acak ini, dan dari waktu ke waktu membuat organisme pada populasi menjadi lebih mirip satu sama lainnya.[57] Efek keseluruhan jenis kelamin pada variasi alami tidaklah jelas, namun riset baru-baru ini menunjukkan bahwa jenis kelamin biasanya meningkatkan variasi genetika dan dapat meningkatkan laju evolusi.[58][59]
Rekombinasi mengijinkan alel sama yang berdekatan satu sama lainnya pada unting DNA diwariskan secara bebas. Namun laju rekombinasi adalah rendah, karena pada manusia dengan potongan satu juta pasangan basa DNA, terdapat satu di antara seratus peluang kejadian rekombinasi terjadi per generasi. Akibatnya, gen-gen yang berdekatan pada kromosom tidak selalu disusun ulang menjauhi satu sama lainnya, sehingga cenderung diwariskan bersama.[60] Kecenderungan ini diukur dengan menemukan bagaimana sering dua alel gen yang berbeda ditemukan bersamaan, yang disebut sebagai ketakseimbangan pertautan (linkage disequilibrium). Satu set alel yang biasanya diwariskan bersama sebagai satu kelompok disebut sebagai haplotipe.
Reproduksi seksual membantu menghilangkan mutasi yang merugikan dan mempertahankan mutasi yang menguntungkan.[61] Sebagai akibatnya, ketika alel tidak dapat dipisahkan dengan rekombinasi (misalnya kromosom Y mamalia yang diwariskan dari ayah ke anak laki-laki), mutasi yang merugikan berakumulasi.[62][63] Selain itu, rekombinasi dan pemilahan ulang dapat menghasilkan individu dengan kombinasi gen yang baru dan menguntungkan. Efek positif ini diseimbangkan oleh fakta bahwa proses ini dapat menyebabkan mutasi dan pemisahan kombinasi gen yang menguntungkan.[61]

[sunting] Genetika populasi

Biston Betularia hitam
Dari sudut pandang genetika, evolusi ialah perubahan pada frekuensi alel dalam populasi yang saling berbagi lungkang gen (gene pool) dari generasi yang satu ke generasi yang lain.[64] Sebuah populasi merupakan kelompok individu terlokalisasi yang merupakan spesies yang sama. Sebagai contoh, semua ngengat dengan spesies yang sama yang hidup di sebuah hutan yang terisolasi mewakili sebuah populasi. Sebuah gen tunggal pada populasi ini dapat mempunyai bentuk-bentuk alternatif yang bertanggung jawab terhadap variasi antar fenotipe organisme. Contohnya adalah gen yang bertanggung jawab terhadap warna ngengat mempunyai dua alel: hitam dan putih. Lungkang gen merupakan keseluruhan set alel pada sebuah populasi tunggal, sehingga tiap alel muncul pada lungkang gen beberapa kali. Fraksi gen dalam lungkang gen yang merupakan alel tertentu disebut sebagai frekuensi alel. Evolusi terjadi ketika terdapat perubahan pada frekuensi alel dalam sebuah populasi organisme yang saling berkembangbiak; sebagai contoh alel untuk warna hitam pada populasi ngengat menjadi lebih umum.
Untuk memahami mekanisme yang menyebabkan sebuah populasi berevolusi, adalah sangat berguna untuk memperhatikan kondisi-kondisi apa saja yang diperlukan oleh suatu populasi untuk tidak berevolusi. Asas Hardy-Weinberg menyatakan bahwa frekuensi alel (variasi pada sebuah gen) pada sebuah populasi yang cukup besar akan tetap konstan jika gaya dorong yang terdapat pada populasi tersebut hanyalah penataan ulang alel secara acak selama pembentukan sperma atau sel telur dan kombinasi acak alel sel kelamin ini selama pembuahan.[65] Populasi seperti ini dikatakan sebagai dalam kesetimbangan Hardy-Weinberg dan tidak berevolusi.[66]

Aliran gen

Singa jantan meninggalkan kelompok di mana ia lahir, dan menuju ke kelompok yang baru untuk berkawin. Hal ini menyebabkan aliran gen antar kelompok singa.
Aliran gen merupakan pertukaran gen antar populasi, yang biasanya merupakan spesies yang sama.[67] Contoh aliran gen dalam sebuah spesies meliputi migrasi dan perkembangbiakan organisme atau pertukaran serbuk sari. Transfer gen antar spesies meliputi pembentukan organisme hibrid dan transfer gen horizontal.
Migrasi ke dalam atau ke luar populasi dapat mengubah frekuensi alel, serta menambah variasi genetika ke dalam suatu populasi. Imigrasi dapat menambah bahan genetika baru ke lungkang gen yang telah ada pada suatu populasi. Sebaliknya, emigrasi dapat menghilangkan bahan genetika. Karena pemisahan reproduksi antara dua populasi yang berdivergen diperlukan agar terjadi spesiasi, aliran gen dapat memperlambat proses ini dengan menyebarkan genetika yang berbeda antar populasi. Aliran gen dihalangi oleh barisan gunung, samudera, dan padang pasir. Bahkan bangunan manusia seperti Tembok Raksasa Cina dapat menghalangi aliran gen tanaman.[68]
Bergantung dari sejauh mana dua spesies telah berdivergen sejak leluhur bersama terbaru mereka, adalah mungkin kedua spesies tersebut menghasilkan keturunan, seperti pada kuda dan keledai yang hasil perkawinan campurannya menghasilkan bagal.[69] Hibrid tersebut biasanya mandul, oleh karena dua set kromosom yang berbeda tidak dapat berpasangan selama meiosis. Pada kasus ini, spesies yang berhubungan dekat dapat secara reguler saling kawin, namun hibrid yang dihasilkan akan terseleksi keluar, dan kedua spesies ini tetap berbeda. Namun, hibrid yang berkemampuan berkembang biak kadang-kadang terbentuk, dan spesies baru ini dapat memiliki sifat-sifat antara kedua spesies leluhur ataupun fenotipe yang secara keseluruhan baru.[70] Pentingnya hibridisasi dalam pembentukan spesies baru hewan tidaklah jelas, walaupun beberapa kasus telah ditemukan pada banyak jenis hewan,[71] Hyla versicolor merupakan contoh hewan yang telah dikaji dengan baik.[72]
Hibridisasi merupakan cara spesiasi yang penting pada tanaman, karena poliploidi (memiliki lebih dari dua kopi pada setiap kromosom) dapat lebih ditoleransi pada tanaman dibandingkan hewan.[73][74] Poliploidi sangat penting pada hibdrid karena ia mengijinkan reproduksi, dengan dua set kromosom yang berbeda, tiap-tiap kromosom dapat berpasangan dengan pasangan yang identik selama meiosis.[75] Poliploid juga memiliki keanekaragaman genetika yeng lebih, yang mengijinkannya menghindari depresi penangkaran sanak (inbreeding depression) pada populasi yang kecil.[76]
Transfer gen horizontal merupakan transfer bahan genetika dari satu organisme ke organisme lainnya yang bukan keturunannya. Hal ini paling umum terjadi pada bakteri.[77] Pada bidang pengobatan, hal ini berkontribusi terhadap resistansi antibiotik. Ketika satu bakteri mendapatkan gen resistansi, ia akan dengan cepat mentransfernya ke spesies lainnya.[78] Transfer gen horizontal dari bakteri ke eukariota seperti khamir Saccharomyces cerevisiae dan kumbang Callosobruchus chinensis juga dapat terjadi.[79][80] Contoh transfer dalam skala besar adalah pada eukariota bdelloid rotifers, yang tampaknya telah menerima gen dari bakteri, fungi, dan tanaman.[81] Virus juga dapat membawa DNA antar organisme, mengijinkan transfer gen antar domain.[82] Transfer gen berskala besar juga telah terjadi antara leluhur sel eukariota dengan prokariota selama akuisisi kloroplas dan mitokondria.[83]

Mekanisme

Mekanisme utama untuk menghasilkan perubahan evolusioner adalah seleksi alam dan hanyutan genetika. Seleksi alam memfavoritkan gen yang meningkatkan kapasitas keberlangsungan dan reproduksi. Hanyutan genetika merupakan perubahan acak pada frekuensi alel, disebabkan oleh percontohan acak (random sampling) gen generasi selama reproduksi. Aliran gen merupakan transfer gen dalam dan antar populasi. Kepentingan relatif seleksi alam dan hanyutan genetika dalam sebuah populasi bervariasi, tergantung pada kuatnya seleksi dan ukuran populasi efektif, yang merupakan jumlah individu yang berkemampuan untuk berkembang biak.[84] Seleksi alam biasanya mendominasi pada populasi yang besar, sedangkan hanyutan genetika mendominasi pada populasi yang kecil. Dominansi hanyutan genetika pada populasi yang kecil bahkan dapat menyebabkan fiksasi mutasi yang sedikit merugikan.[85] Karenanya, dengan mengubah ukuran populasi dapat secara dramatis memengaruhi arah evolusi. Leher botol populasi, di mana populasi mengecil untuk sementara waktu dan kehilangan variasi genetika, menyebabkan populasi yang lebih seragam.[34] Leher botol disebabkan oleh perubahan pada aliran gen, seperti migrasi yang menurun, ekspansi ke habitat yang baru, ataupun subdivisi populasi.[84]

Seleksi alam

Seleksi alam populasi berwarna kulit gelap.
Seleksi alam adalah proses di mana mutasi genetika yang meningkatkan keberlangsungan dan reproduksi suatu organisme menjadi (dan tetap) lebih umum dari generasi yang satu ke genarasi yang lain pada sebuah populasi. Ia sering disebut sebagai mekanisme yang "terbukti sendiri" karena:
  • Variasi terwariskan terdapat dalam populasi organisme.
  • Organisme menghasilkan keturunan lebih dari yang dapat bertahan hidup
  • Keturunan-keturunan ini bervariasi dalam kemampuannya bertahan hidup dan bereproduksi.
Kondisi-kondisi ini menghasilkan kompetisi antar organisme untuk bertahan hidup dan bereproduksi. Oleh sebab itu, organisme dengan sifat-sifat yang lebih menguntungkan akan lebih berkemungkinan mewariskan sifatnya, sedangkan yang tidak menguntungkan cenderung tidak akan diwariskan ke generasi selanjutnya.
Konsep pusat seleksi alam adalah kebugaran evolusi organisme. Kebugaran evolusi mengukur kontribusi genetika organisme pada generasi selanjutnya. Namun, ini tidaklah sama dengan jumlah total keturunan, melainkan kebugaran mengukur proporsi generasi tersebut untuk membawa gen sebuah organisme.[86] Karena itu, jika sebuah alel meningkatkan kebugaran lebih daripada alel-alel lainnya, maka pada tiap generasi, alel tersebut menjadi lebih umum dalam populasi. Contoh-contoh sifat yang dapat meningkatkan kebugaran adalah peningkatan keberlangsungan hidup dan fekunditas. Sebaliknya, kebugaran yang lebih rendah yang disebabkan oleh alel yang kurang menguntungkan atau merugikan mengakibatkan alel ini menjadi lebih langka.[2] Adalah penting untuk diperhatikan bahwa kebugaran sebuah alel bukanlah karakteristik yang tetap. Jika lingkungan berubah, sifat-sifat yang sebelumnya bersifat netral atau merugikan bisa menjadi menguntungkan dan yang sebelumnya menguntungkan bisa menjadi merugikan.[1].
Seleksi alam dalam sebuah populasi untuk sebuah sifat yang nilainya bervariasi, misalnya tinggi badan, dapat dikategorikan menjadi tiga jenis. Yang pertama adalah seleksi berarah (directional selection), yang merupakan geseran nilai rata-rata sifat dalam selang waktu tertentu, misalnya organisme cenderung menjadi lebih tinggi.[87] Kedua, seleksi pemutus (disruptive selection), merupakan seleksi nilai ekstrem, dan sering mengakibatkan dua nilai yang berbeda menjadi lebih umum (dengan menyeleksi keluar nilai rata-rata). Hal ini terjadi apabila baik organisme yang pendek ataupun panjang menguntungkan, sedangkan organisme dengan tinggi menengah tidak. Ketiga, seleksi pemantap (stabilizing selection), yaitu seleksi terhadap nilai-nilai ektrem, menyebabkan penurunan variasi di sekitar nilai rata-rata.[88] Hal ini dapat menyebabkan organisme secara pelahan memiliki tinggi badan yang sama.
Kasus khusus seleksi alam adalah seleksi seksual, yang merupakan seleksi untuk sifat-sifat yang meningkatkan keberhasilan perkawinan dengan meningkatkan daya tarik suatu organisme.[89] Sifat-sifat yang berevolusi melalui seleksi seksual utamanya terdapat pada pejantan beberapa spesies hewan. Walaupun sifat ini dapat menurunkan keberlangsungan hidup individu jantan tersebut (misalnya pada tanduk rusa yang besar dan warna yang cerah dapat menarik predator),[90] Ketidakuntungan keberlangsungan hidup ini diseimbangkan oleh keberhasilan reproduksi yang lebih tinggi pada penjantan.[91]
Bidang riset yang aktif dalam bidang biologi evolusi pada saat ini adalah satuan seleksi, dengan seleksi alam diajukan bekerja pada tingkat gen, sel, organisme individu, kelompok organisme, dan bahkan spesies.[92][93] Dari model-model ini, tiada yang eksklusif, dan seleksi dapat bekerja pada beberapa tingkatan secara serentak.[94] Di bawah tingkat individu, gen yang disebut transposon berusaha menkopi dirinya di seluruh genom.[95] Seleksi pada tingkat di atas individu, seperti seleksi kelompok, dapat mengijinkan evolusi ko-operasi.[96]

Hanyutan genetika

Simulasi hanyutan genetika 20 alel yang tidak bertaut pada jumlah populasi 10 (atas) dan 100 (bawah). Hanyutan mencapai fiksasi lebih cepat pada populasi yang lebih kecil.
Hanyutan genetika atau ingsut genetik merupakan perubahan frekuensi alel dari satu generasi ke generasi selanjutnya yang terjadi karena alel pada suatu keturunan merupakan sampel acak (random sample) dari orang tuanya; selain itu ia juga terjadi karena peranan probabilitas dalam penentuan apakah suatu individu akan bertahan hidup dan bereproduksi atau tidak.[34] Dalam istilah matematika, alel berpotensi mengalami galat percontohan (sampling error). Karenanya, ketika gaya dorong selektif tidak ada ataupun secara relatif lemah, frekuensi-frekuensi alel cenderung "menghanyut" ke atas atau ke bawah secara acak (langkah acak). Hanyutan ini berhenti ketika sebuah alel pada akhirnya menjadi tetap, baik karena menghilang dari populasi, ataupun menggantikan keseluruhan alel lainnya. Hanyutan genetika oleh karena itu dapat mengeliminasi beberapa alel dari sebuah populasi hanya karena kebetulan saja. Bahkan pada ketidadaan gaya selektif, hanyutan genetika dapat menyebabkan dua populasi yang terpisah dengan stuktur genetik yang sama menghanyut menjadi dua populasi divergen dengan set alel yang berbeda.[97]
Waktu untuk sebuah alel menjadi tetap oleh hanyutan genetika bergantung pada ukuran populasi, dengan fiksasi terjadi lebih cepat dalam populasi yang lebih kecil.[98] Pengukuran populasi yang tepat adalah ukuran populasi efektif, yakni didefinisikan oleh Sewall Wright sebagai bilangan teoretis yang mewakili jumlah individu berkembangbiak yang akan menunjukkan derajat perkembangbiakan terpantau yang sama.
Walaupun seleksi alam bertanggung jawab terhadap adaptasi, kepentingan relatif seleksi alam dan hanyutan genetika dalam mendorong perubahan evolusioner secara umum merupakan bidang riset pada biologi evolusioner.[99] Investigasi ini disarankan oleh teori evolusi molekuler netral, yang mengajukan bahwa kebanyakan perubahan evolusioner merupakan akibat dari fiksasi mutasi netral yang tidak memiliki efek seketika pada kebugaran suatu organisme.[100] Sehingga, pada model ini, kebanyakan perubahan genetika pada sebuat populasi merupakan akibat dari tekanan mutasi konstan dan hanyutan genetika.[101]

Akibat evolusi

Evolusi memengaruhi setiap aspek dari bentuk dan perilaku organisme. Yang paling terlihat adalah adaptasi perilaku dan fisik yang diakibatkan oleh seleksi alam. Adaptasi-adaptasi ini meningkatkan kebugaran dengan membantu aktivitas seperti menemukan makanan, menghindari predator, dan menarik lawan jenis. Organisme juga dapat merespon terhadap seleksi dengan berkooperasi satu sama lainnya, biasanya dengan saling membantu dalam simbiosis. Dalam jangka waktu yang lama, evolusi menghasilkan spesies yang baru melalui pemisahan populasi leluhur organisme menjadi kelompok baru yang tidak akan bercampur kawin.
Akibat evolusi kadang-kadang dibagi menjadi makroevolusi dan mikroevolusi. Makroevolusi adalah evolusi yang terjadi pada tingkat di atas spesies, seperti kepunahan dan spesiasi. Sedangkan mikroevolusi adalah perubahan evolusioner yang kecil, seperti adaptasi yang terjadi dalam spesies atau populasi. Secara umum, makroevolusi dianggap sebagai akibat jangka panjang dari mikroevolusi.[102] Sehingga perbedaan antara mikroevolusi dengan makroevolusi tidaklah begitu banyak terkecuali pada waktu yang terlibat dalam proses tersebut.[103] Namun, pada makroevolusi, sifat-sifat keseluruhan spesies adalah penting. Misalnya, variasi dalam jumlah besar di antara individu mengijinkan suatu spesies secara cepat beradaptasi terhadap habitat yang baru, mengurangi kemungkinan terjadinya kepunahan. Sedangkan kisaran geografi yang luas meningkatkan kemungkinan spesiasi dengan membuat sebagian populasi menjadi terisolasi. Dalam pengertian ini, mikroevolusi dan makroevolusi dapat melibatkan seleksi pada tingkat-tingkat yang berbeda, dengan mikroevolusi bekerja pada gen dan organisme, versus makroevolusi yang bekerja pada keseluruhan spesies dan memengaruhi laju spesiasi dan kepunahan.[104][105][106]
Terdapat sebuah miskonsepsi bahwa evolusi bersifat "progresif", namun seleksi alam tidaklah memiliki tujuan jangka panjang dan tidak perlulah menghasilkan kompleksitas yang lebih besar.[107] Walaupun spesies kompleks berkembang dari evolusi, hal ini terjadi sebagai efek samping dari jumlah organisme yang meningkat, dan bentuk kehidupan yang sederhana tetap lebih umum.[108] Sebagai contoh, mayoritas besar spesies adalah prokariota mikroskopis yang membentuk setengah biomassa dunia walaupun bentuknya yang kecil,[109] serta merupakan mayoritas pada biodiversitas bumi.[110] Organisme sederhana oleh karenanya merupakan bentuk kehidupan yang dominan di bumi dalam sejarahnya sampai sekarang. Kehidupan kompleks tampaknya lebih beranekaragam karena ia lebih mudah diamati.[111]

Adaptasi

!Untuk detail lebih lanjut tentang topik ini, lihat Adaptasi.
Adaptasi merupakan struktur atau perilaku yang meningkatkan fungsi organ tertentu, menyebabkan organisme menjadi lebih baik dalam bertahan hidup dan bereproduksi.[7] Ia diakibatkan oleh kombinasi perubahan acak dalam skala kecil pada sifat organisme secara terus menerus yang diikuti oleh seleksi alam varian yang paling cocok terhadap lingkungannya.[112] Proses ini dapat menyebabkan penambahan ciri-ciri baru ataupun kehilangan ciri-ciri leluhur. Contohnya adalah adaptasi bakteri terhadap seleksi antibiotik melalui perubahan genetika yang menyebabkan resistansi antibiotik. Hal ini dapat dicapai dengan mengubah target obat ataupun meningkatkan aktivitas transporter yang memompa obat keluar dari sel.[113] Contoh lainnya adalah bakteri Escherichia coli yang berevolusi menjadi berkemampuan menggunakan asam sitrat sebagai nutrien pada sebuah eksperimen laboratorium jangka panjang,[114] ataupun Flavobacterium yang berhasil menghasilkan enzim yang mengijinkan bakteri-bakteri ini tumbuh di limbah produksi nilon.[115][116]
Namun, banyak sifat-sifat yang tampaknya merupakan adapatasi sederhana sebenarnya merupakan eksaptasi, yakni struktur yang awalnya beradaptasi untuk fungsi tertentu namun secara kebetulan memiliki fungsi-fungsi lainnya dalam proses evolusi.[117] Contohnya adalah cicak Afrika Holaspis guentheri yang mengembangkan bentuk kepala yang sangat pipih untuk dapat bersembunyi di celah-celah retakan, seperti yang dapat dilihat pada kerabat dekat spesies ini. Namun, pada spesies ini, kepalanya menjadi sangat pipih, sehingga hal ini membantu spesies tersebut meluncur dari pohon ke pohon.[117] Contoh lainnya adalah penggunaan enzim dari glikolisis dan metabolisme xenobiotik sebagai protein struktural yang dinamakan kristalin (crystallin) dalam lensa mata organisme.[118][119]
Kerangka paus balin, label a dan b merupakan tulang kaki sirip yang merupakan adaptasi dari tulang kaki depan; sedangkan c mengindikasikan tulang kaki vestigial.[120]
Ketika adaptasi terjadi melalui modifikasi perlahan pada stuktur yang telah ada, struktur dengan organisasi internal dapat memiliki fungsi yang sangat berbeda pada organisme terkait. Ini merupakan akibat dari stuktur leluhur yang diadaptasikan untuk berfungsi dengan cara yang berbeda. Tulang pada sayap kelelawar sebagai contohnya, secara struktural sama dengan tangan manusia dan sirip anjing laut oleh karena struktur leluhur yang sama yang mempunyai lima jari. Ciri-ciri anatomi idiosinkratik lainnya adalah tulang pada pergelangan panda yang terbentuk menjadi "ibu jari" palsu, mengindikasikan bahwa garis keturunan evolusi suatu organisme dapat membatasi adaptasi apa yang memungkinkan.[121]
Selama adaptasi, beberapa struktur dapat kehilangan fungsi awalnya dan menjadi struktur vestigial.[122] Struktur tersebut dapat memiliki fungsi yang kecil atau sama sekali tidak berfungsi pada spesies sekarang, namun memiliki fungsi yang jelas pada spesies leluhur atau spesies lainnya yang berkerabat dekat. Contohnya meliputi pseudogen,[123] sisa mata yang tidak berfungsi pada ikan gua yang buta,[124] sayap pada burung yang tidak dapat terbang,[125] dan keberadaan tulang pinggul pada ikan paus dan ular.[126] Contoh stuktur vestigial pada manusia meliputi geraham bungsu,[127] tulang ekor,[122] dan umbai cacing (apendiks vermiformis).[122]
Bidang investigasi masa kini pada biologi perkembangan evolusioner adalah perkembangan yang berdasarkan adaptasi dan eksaptasi.[128] Riset ini mengalamatkan asal muasal dan evolusi perkembangan embrio, dan bagaimana modifikasi perkembangan dan proses perkembangan ini menghasilkan ciri-ciri yang baru.[129] Kajian pada bidang ini menunjukkan bahwa evolusi dapat mengubah perkembangan dan menghasilkan struktur yang baru, seperti stuktur tulang embrio yang berkembang menjadi rahang pada beberapa hewan daripada menjadi telinga tengah pada mamalia.[130] Adalah mungkin untuk struktur yang telah hilang selama proses evolusi muncul kembali karena perubahan pada perkembangan gen, seperti mutasi pada ayam yang menyebabkan pertumbuhan gigi yang mirip dengan gigi buaya.[131] Adalah semakin jelas bahwa kebanyakan perubahan pada bentuk organisme diakibatkan oleh perubahan pada tingkat dan waktu ekspresi sebuah set kecil gen yang terpelihara.[132]

Koevolusi

Interaksi antar organisme dapat menghasilkan baik konflik maupuan koopreasi. Ketika interaksi antar pasangan spesies, seperti patogen dengan inang atau predator dengan mangsanya, spesies-spesies ini mengembangkan set adaptasi yang bersepadan. Dalam hal ini, evolusi satu spesies menyebabkan adaptasi spesies ke-dua. Perubahan pada spesies ke-dua kemudian menyebabkan kembali adaptasi spesies pertama. Siklus seleksi dan respon ini dikenal sebagai koevolusi.[133] Contohnya adalah produksi tetrodotoksin pada kadal air Taricha granulosa dan evolusi resistansi tetrodotoksin pada predatornya, ular Thamnophis sirtalis. Pada pasangan predator-mangsa ini, persaingan senjata evolusioner ini mengakibatkan kadar racun yang tinggi pada mangsa dan resistansi racun yang tinggi pada predatornya.[134]

[sunting] Kooperasi

Namun, tidak semua interaksi antar spesies melibatkan konflik.[135] Pada kebanyakan kasus, interaksi yang saling menguntungkan berkembang. Sebagai contoh, kooperasi ekstrem yang terdapat antara tanaman dengan fungi mycorrhizal yang tumbuh di akar tanaman dan membantu tanaman menyerap nutrien dari tanah.[136] Ini merupakan hubungan timbal balik, dengan tanaman menyediakan gula dari fotosintesis ke fungi. Pada kasus ini, fungi sebenarnya tumbuh di dalam sel tanaman, mengijinkannya bertukar nutrien dengan inang manakala mengirim sinyal yang menekan sistem immun tanaman.[137]
Koalisi antara organisme spesies yang sama juga berkembang. Kasus ekstrem ini adalah eusosialitas yang ditemukan pada serangga sosial, seperti lebah, rayap, dan semut, di mana serangga mandul memberi makan dan menjaga sejumlah organisme dalam koloni yang dapat berkembang biak. Pada skala yang lebih kecil sel somatik yang menyusun tubuh seekor hewan membatasi reproduksinya agar dapat menjaga organisme yang stabil, sehingga kemudian dapat mendukung sejumlah kecil sel nutfah hewan untuk menghasilkan keturunan. Dalam kasus ini, sel somatik merespon terhadap signal tertentu yang menginstruksikannya untuk tumbuh maupun mati. Jika sel mengabaikan signal ini dan kemudian menggandakan diri, pertumbuhan yang tidak terkontrol ini akan menyebabkan kanker.[38]
Kooperasi dalam spesies diperkirakan berkembang melalui proses seleksi sanak (kin selection), di mana satu organisme berperan memelihara keturunan sanak saudaranya.[138] Aktivitas ini terseleksi karena apabila individu yang "membantu" mengandung alel yang mempromosikan aktivitas bantuan, adalah mungkin bahwa sanaknya "juga" mengandung alel ini, sehingga alel-alel tersebut akan diwariskan.[139] Proses lainnya yang mempromosikan kooperasi meliputi seleksi kelompok, di mana kooperasi memberikan keuntungan terhadap kelompok organisme tersebut.[140]

Pembentukan spesies baru (Spesiasi)

Empat mekanisme spesiasi.
Spesiasi adalah proses suatu spesies berdivergen menjadi dua atau lebih spesies.[141] Ia telah terpantau berkali-kali pada kondisi laboratorium yang terkontrol maupun di alam bebas.[142] Pada organisme yang berkembang biak secara seksual, spesiasi dihasilkan oleh isolasi reproduksi yang diikuti dengan divergensi genealogis. Terdapat empat mekanisme spesiasi. Yang paling umum terjadi pada hewan adalah spesiasi alopatrik, yang terjadi pada populasi yang awalnya terisolasi secara geografis, misalnya melalui fragmentasi habitat atau migrasi. Seleksi di bawah kondisi demikian dapat menghasilkan perubahan yang sangat cepat pada penampilan dan perilaku organisme.[143][144] Karena seleksi dan hanyutan bekerja secara bebas pada populasi yang terisolasi, pemisahan pada akhirnya akan menghasilkan organisme yang tidak akan dapat berkawin campur.[145]
Mekanisme kedua spesiasi adalah spesiasi peripatrik, yang terjadi ketika sebagian kecil populasi organisme menjadi terisolasi dalam sebuah lingkungan yang baru. Ini berbeda dengan spesiasi alopatrik dalam hal ukuran populasi yang lebih kecil dari populasi tetua. Dalam hal ini, efek pendiri menyebabkan spesiasi cepat melalui hanyutan genetika yang cepat dan seleksi terhadap lungkang gen yang kecil.[146]
Mekanisme ketiga spesiasi adalah spesiasi parapatrik. Ia mirip dengan spesiasi peripatrik dalam hal ukuran populasi kecil yang masuk ke habitat yang baru, namun berbeda dalam hal tidak adanya pemisahan secara fisik antara dua populasi. Spesiasi ini dihasilkan dari evolusi mekanisme yang mengurangi aliran genetika antara dua populasi.[141] Secara umum, ini terjadi ketika terdapat perubahan drastis pada lingkungan habitat tetua spesies. Salah satu contohnya adalah rumput Anthoxanthum odoratum, yang dapat mengalami spesiasi parapatrik sebagai respon terhadap polusi logam terlokalisasi yang berasal dari pertambangan.[147] Pada kasus ini, tanaman berevolusi menjadi resistan terhadap kadar logam yang tinggi dalam tanah. Seleksi keluar terhadap kawin campur dengan populasi tetua menghasilkan perubahan pada waktu pembungaan, menyebabkan isolasi reproduksi. Seleksi keluar terhadap hibrid antar dua populasi dapat menyebabkan "penguatan", yang merupakan evolusi sifat yang mempromosikan perkawinan dalam spesies, serta peralihan karakter, yang terjadi ketika dua spesies menjadi lebih berbeda pada penampilannya.[148]
Isolasi geografis burung Finch di Kepulauan Galapagos menghasilkan lebih dari satu lusin spesies baru.
Mekanisme keempat spesiasi adalah spesiasi simpatrik, di mana spesies berdivergen tanpa isolasi geografis atau perubahan pada habitat. Mekanisme ini cukup langka karena hanya dengan aliran gen yang sedikit akan menghilangkan perbedaan genetika antara satu bagian populasi dengan bagian populasi lainnya.[149] Secara umum, spesiasi simpatrik pada hewan memerlukan evolusi perbedaan genetika dan perkawinan tak-acak, mengijinkan isolasi reproduksi berkembang.[150]
Salah satu jenis spesiasi simpatrik melibatkan perkawinan silang dua spesies yang berkerabat, menghasilkan spesies hibrid. Hal ini tidaklah umum terjadi pada hewan karena hewan hibrid bisanya mandul. Sebaliknya, perkawinan silang umumnya terjadi pada tanaman, karena tanaman sering menggandakan jumlah kromosomnya, membentuk poliploid. Ini mengijinkan kromosom dari tiap spesies tetua membentuk pasangan yang sepadan selama meiosis.[151] Salah satu contoh kejadian spesiasi ini adalah ketika tanaman Arabidopsis thaliana dan Arabidopsis arenosa berkawin silang, menghasilkan spesies baru Arabidopsis suecica.[152] Hal ini terjadi sekitar 20.000 tahun yang lalu,[153] dan proses spesiasi ini telah diulang dalam laboratorium, mengijinkan kajian mekanisme genetika yang terlibat dalam proses ini.[154] Sebenarnya, penggandaan kromosom dalam spesies merupakan sebab utama isolasi reproduksi, karena setengah dari kromosom yang berganda akan tidak sepadan ketika berkawin dengan organisme yang kromosomnya tidak berganda.[74]

Kepunahan

Fosil tarbosaurus. Dinosaurus non-aves yang mati pada peristiwa kepunahan Kapur-Tersier pada akhir periode Kapur.
Kepunahan merupakan kejadian hilangnya keseluruhan spesies. Kepunahan bukanlah peristiwa yang tidak umum, karena spesies secara reguler muncul melalui spesiasi dan menghilang melalui kepunahan.[155] Sebenarnya, hampir seluruh spesies hewan dan tanaman yang pernah hidup di bumi telah punah,[156] dan kepunahan tampaknya merupakan nasib akhir semua spesies.[157] Kepunahan telah terjadi secara terus menerus sepanjang sejarah kehidupan, walaupun kadang-kadang laju kepunahan meningkat tajam pada peristiwa kepunahan massal.[158] Peristiwa kepunahan Kapur-Tersier adalah salah satu contoh kepunahan massal yang terkenal, di mana dinosaurus menjadi punah. Namun peristiwa yang lebih awal, Peristiwan kepunahan Perm-Trias lebih buruk, dengan sekitar 96 persen spesies punah.[158] Peristiwa kepunahan Holosen merupakan kepunahan massal yang diasosiasikan dengan ekspansi manusia ke seluruh bumi selama beberapa ribu tahun. Laju kepunahan masa kini 100-1000 kali lebih besar dari laju latar, dan sampai dengan 30 persen spesies dapat menjadi punah pada pertengahan abad ke-21.[159] Aktivitas manusia sekarang menjadi penyebab utama peristiwa kepunahan yang sedang berlangsung ini.[160] Selain itu, pemanasan global dapat mempercepat laju kepunahan lebih lanjut.[161]
Peranan kepunahan pada evolusi tergantung pada jenis kepunahan tersebut. Penyebab persitiwa kepunahan "tingkat rendah" secara terus menerus (yang merupakan mayoritas kasus kepunahan) tidaklah jelas dan kemungkinan merupakan akibat kompetisi antar spesies terhadap sumber daya yang terbatas (prinsip hindar-saing).[12] Jika kompetisi dari spesies lain mengubah probabilitas suatu spesies menjadi punah, hal ini dapat menghasilkan seleksi spesies sebagai salah satu tingkat seleksi alam.[92] Peristiwa kepunahan massal jugalah penting, namun daripada berperan sebagai gaya selektif, ia secara drastis mengurangi keanekaragaman dan mendorong evolusi cepat secara tiba-tiba serta spesiasi pada makhluk yang selamat dari kepunahan.[158]

Sejarah evolusi kehidupan

Asal usul kehidupan

Asal usul kehidupan merupakan prekursor evolusi biologis, namun pemahaman terhadap evolusi yang terjadi seketika organisme muncul dan investigasi bagaimana ini terjadi tidak tergantung pada pemahaman bagaimana kehidupan dimulai.[162] Konsensus ilmiah saat ini adalah bahwa senyawa biokimia yang kompleks, yang menyusus kehidupan, berasal dari reaksi kimia yang lebih sederhana. Namun belumlah jelas bagaimana ia terjadi.[163] Tidak begitu pasti bagaimana perkembangan kehidupan yang paling awal, struktur kehidupan pertama, ataupun identitas dan ciri-ciri dari leluhur universal terakhir dan lungkang gen leluhur.[164][165] Oleh karena itu, tidak terdapat konsensus ilmiah yang pasti bagaimana kehidupan dimulai, namun terdapat beberapa proposal yang melibatkan molekul swa-replikasi (misalnya RNA)[166] dan perakitan sel sederhana.[167]

Nenek moyang bersama

Hominoid merupakan keturunan dari nenek moyang yang sama.
Semua organisme di bumi merupakan keturunan dari leluhur atau lungkang gen leluhur yang sama.[168] Spesies masa kini yang juga berada dalam proses evolusi dengan keanekaragamannya merupakan hasil dari rentetan peristiwa spesiasi dan kepunahan.[169] Nenek moyang bersama organisme pertama kali dideduksi dari empat fakta sederhana mengenai organisme. Pertama, bahwa organisme-organisme memiliki distribusi geografi yang tidak dapat dijelaskan dengan adaptasi lokal. Kedua, bentuk keanekaragaman hayati tidaklah berupa organisme yang berbeda sama sekali satu sama lainnya, melainkan berupa organisme yang memiliki kemiripan morfologis satu sama lainnya. Ketiga, sifat-sifat vestigial dengan fungsi yang tidak jelas memiliki kemiripan dengan sifat leluhur yang berfungsi jelas. Terakhir, organisme-organisme dapat diklasifikasikan berdasarkan kemiripan ini ke dalam kelompok-kelompok hirarkis.[7]
Spesies-spesies lampau juga meninggalkan catatan sejarah evolusi mereka. Fosil, bersama dengan anatomi yang dapat dibandingkan dengan organisme sekarang, merupakan catatan morfologi dan anatomi.[170] Dengan membandingkan anatomi spesies yang sudah punah dengan spesies modern, ahli paleontologi dapat menarik garis keturunan spesies tersebut. Namun pendekatan ini hanya berhasil pada organisme-organisme yang mempunyai bagian tubuh yang keras, seperti cangkang, kerangka, atau gigi. Lebih lanjut lagi, karena prokariota seperti bakteri dan arkaea hanya memiliki kemiripan morfologi bersama yang terbatas, fosil-fosil prokariota tidak memberikan informasi mengenai leluhurnya.
Baru-baru ini, bukti nenek moyang bersama datang dari kajian kemiripan biokimia antar spesies. Sebagai contoh, semua sel hidup di dunia ini mempunyai set dasar nukleotida dan asam amino yang sama.[171] Perkembangan genetika molekuler telah menyingkap catatan evolusi yang tertinggal pada genom organisme, sehingga dapat diketahui kapan spesies berdivergen melalui jam molekul yang dihasilkan oleh mutasi.[172] Sebagai contoh, perbandingan urutan DNA ini telah menyingkap kekerabatan genetika antara manusia dengan simpanse dan kapan nenek moyang bersama kedua spesies ini pernah ada.[173]

Evolusi kehidupan

Pohon evolusi yang menunjukkan divergensi spesies-spesies modern dari nenek moyang bersama yang berada di tengah[174] Tiga domain diwarnai berbeda, dengan warna biru adalah bakteri, hijau adalah arkaea, dan merah adalah eukariota.
Walaupun terdapat ketidakpastian bagaimana kehidupan bermula, adalah umumnya diterima bahwa prokariota hidup di bumi sekitar 3–4 milyar tahun yang lalu.[175][176] Tidak terdapat perubahan yang banyak pada morfologi atau organisasi sel yang terjadi pada organisme ini selama beberapa milyar tahun ke depan.[177]
Eukariota merupakan perkembangan besar pada evolusi sel. Ia berasal dari bakteri purba yang ditelan oleh leluhur sel prokariotik dalam asosiasi kooperatif yang disebut endosimbiosis.[83][178] Bakteri yang ditelan dan sel inang kemudian menjalani koevolusi, dengan bakteri berevolusi menjadi mitokondria ataupun hidrogenosom.[179] Penelanan kedua secara terpisah pada organisme yang mirip dengan sianobakteri mengakibatkan pembentukan kloroplas pada ganggang dan tumbuhan.[180] Tidaklah diketahui kapan sel pertama eukariotik muncul, walaupun sel-sel ini muncul sekitar 1,6 - 2,7 milyar tahun yang lalu.
Sejarah kehidupan masih berupa eukariota, prokariota, dan arkaea bersel tunggal sampai sekitar 610 milyar tahun yang lalu, ketika organisme multisel mulai muncul di samudra pada periode Ediakara.[175][181] Evolusi multiselularitas terjadi pada banyak peristiwa yang terpisah, terjadi pada organisme yang beranekaragam seperti bunga karang, ganggang coklat, sianobakteri, jamur lendir, dan miksobakteri.[182]
Segera sesudah kemunculan organisme multisel, sejumlah besar keanekaragaman biologis muncul dalam jangka waktu lebih dari sekitar 10 juta tahun pada perstiwa yang dikenal sebagai ledakan Kambria. Pada masa ini, mayoritas jenis hewan modern muncul pada catatan fosil, demikian pula garis silsilah hewan yang telah punah.[183] Beberapa faktor pendorong ledakan Kambria telah diajukan, meliputi akumulasi oksigen pada atmosfer dari fotosintesis.[184] Sekitar 500 juta tahun yang lalu, tumbuhan dan fungi mengkolonisasi daratan, dan dengan segera diikuti oleh arthropoda dan hewan lainnya.[185] Hewan amfibi pertama kali muncul sekitar 300 juta tahun yang lalu, diikuti amniota, kemudian mamalia sekitar 200 juta tahun yang lalu, dan aves sekitar 100 juta tahun yang lalu. Namun, walaupun terdapat evolusi hewan besar, organisme-organisme yang mirip dengan organisme awal proses evolusi tetap mendominasi bumi, dengan mayoritas biomassa dan spesies bumi berupa prokariota.[110]

Kontroversi Sosial akan Evolusi

Seiring dengan penerimaan "Darwinisme" yang meluas pada 1870-an, karikatur Charles Darwin dengan tubuh kera atau monyet menyimbolkan evolusi.[186]
Pada abad ke-19, terutama semenjak penerbitan buku Darwin "The Origin of Species", pemikiran bahwa kehidupan berevolusi mendapat banyak kritik dan menjadi tema yang kontroversial. Namun demikian, kontroversi ini pada umumnya berkisar pada implikasi teori evolusi di bidang filsafat, sosial, dan agama. Di dalam komunitas ilmuwan, fakta bahwa organisme berevolusi telah diterima secara luas dan tidak mendapat tantangan. Walaupun demikian, evolusi masih menjadi konsep yang diperdebatkan oleh beberapa kelompok agama.[187]
Manakala berbagai kelompok agama berusaha menyambungkan ajaran mereka dengan teori evolusi melalui berbagai konsep evolusi teistik, terdapat banyak pendukung ciptaanisme yang percaya bahwa evolusi berkontradiksi dengan mitos penciptaan yang ditemukan pada ajaran agama mereka.[188] Seperti yang sudah diprediksi oleh Darwin, implikasi yang paling kontroversial adalah asal usul manusia. Di beberapa negara, terutama di Amerika Serikat, pertentangan antara agama dan sains telah mendorong kontroversi penciptaan-evolusi, konflik keagamaan yang berfokus pada politik dan pendidikan.[189] Manakala bidang-bidang sains lainnya seperti kosmologi[190] dan ilmu bumi[191] juga bertentangan dengan interpretasi literal banyak teks keagamaan, biologi evolusioner mendapatkan oposisi yang lebih signifikan.
Beberapa contoh kontroversi tak beralasan yang diasosiasikan dengan teori evolusi adalah "Darwinisme sosial", istilah yang diberikan kepada teori Malthusianisme yang dikembangkan oleh Herbert Spencer mengenai sintasan yang terbugar (survival of the fittest) dalam masyarakat, dan oleh lainnya mengklaim bahwa kesenjangan sosial, rasisme, dan imperialisme oleh karena itu dibenarkan.[192] Namun, pemikiran-pemikiran ini berkontradiksi dengan pandangan Darwin itu sendiri, dan ilmuwan berserta filsuf kontemporer menganggap pemikiran ini bukanlah amanat dari teori evolusi maupun didukung oleh data.[193][194]

Aplikasi

Aplikasi utama evolusi pada bidang teknologi adalah seleksi buatan, yakni seleksi terhadap sifat-sifat tertentu pada sebuah populasi organisme yang disengajakan. Manusia selama beberapa ribu tahun telah menggunakan seleksi buatan pada domestikasi tumbuhan dan hewan.[195] Baru-baru ini, seleksi buatan seperti ini telah menjadi bagian penting dalam rekayasa genetika, dengan penanda terseleksi seperti gen resistansi antibiotik digunakan untuk memanipulasi DNA pada biologi molekuler.
Karena evolusi dapat menghasilkan proses dan jaringan yang sangat optimal, ia memiliki banyak aplikasi pada ilmu komputer. Pada ilmu komputer, simulasi evolusi yang menggunakan algoritma evolusi dan kehidupan buatan dimulai oleh Nils Aall Barricelli pada tahun 1960-an, dan kemudian diperluas oleh Alex Fraser yang mempublikasi berbagai karya ilmiah mengenai simulasi seleksi buatan.[196] Seleksi buatan menjadi metode optimalisasi yang dikenal luas oleh hasil kerja Ingo Rechenberg pada tahun 1960-an dan awal tahun 1970-an, yang menggunakan strategi evolusi untuk menyelesaikan masalah teknik yang kompleks.[197] Algoritma genetika utamanya, menjadi populer oleh karya tulisan John Holland.[198] Seiring dengan meningkatnya ketertarikan akademis, peningkatan kemampuan komputer mengijinkan aplikasi yang praktis, meliputi evolusi otomatis program komputer.[199] Algoritma evolusi sekarang digunakan untuk menyelesaikan masalah multidimensi. Penyelesaian menggunakan algoritma ini lebih efisien daripada menggunakan perangkat lunak yang diproduksi oleh perancang manusia. Selain itu, ia juga digunakan untuk mengoptimalkan desain sistem.[200]